Conceptual Question on Mass-Energy Equivalence. #3

 QUESTION:

A free neutron can decay into a proton, an electron, and an anti-neutrino. Assume the anti-neutrino’s rest mass is zero, and the rest masses for proton and electron are 1.6726 \times 10^{ -27}\rm \ kg and 9.11\times10^{ -31}\rm \ kg respectively. Determine the total kinetic energy shared among the three particles when a neutron decays at rest.

 SOLUTION:

Given:

  • the rest masses of the proton is 1.6726\times 10^{ -27}\rm \ kg,
  • the rest masses of the electron is 9.11\times 10^{ -31}\rm \ kg, and
  • the rest masses of the anti-neutrino is 0.

 To find:

  • the total kinetic energy shared among the three particles when a neutron decays at rest.

We know the values:

  • the rest masses for neutron is 1.6749 \times 10^{ -27}\rm \ kg, and
  • the unified atomic mass, \rm u = 1.66054\times 10^{ -27}\rm \ kg

The nuclear reaction of neutron-decay is

\rm n \rightarrow p + e^{-1} + \bar{\nu}

The mass defect of the above nuclear reaction is given by;

\begin{aligned} \Delta m &= \text{Mass}(\rm neutron) – \text{Mass} (\rm protron)- \text{Mass} (\rm electron) -Mass (\rm anti-neutrino) \\ &=(1.674929\times 10^{ -27}\rm \ kg) – (1.6726\times 10^{ -27} \ kg)-(9.11\times 10^{ -31} \ kg)-0\\ &= 0.001418\rm \ kg\\ \end{aligned}

Therefore, the total kinetic energy shared among the three particles when a neutron decays at rest is;

\begin{aligned} K.E._{( p + e^{-1} + \bar{\nu})} &= \Delta m c^2\\ &=(0.001418\rm \ kg) \times (3\times 10^8 \ m/s)^2\\ &= 1.2762\times 10^6\rm \ J \\ \end{aligned}

Leave a Comment

Your email address will not be published. Required fields are marked *

Don`t copy text!
Index
Scroll to Top